6.1: Evaluating Algebraic Expressions (2024)

  1. Last updated
  2. Save as PDF
  • Page ID
    57572
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vectorC}[1]{\textbf{#1}}\)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}}\)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}\)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    In this section we will evaluate algebraic expressions for given values of the variables contained in the expressions. Here are some simple tips to help you be successful.

    Tips for Evaluating Algebraic Expressions

    1. Replace all occurrences of variables in the expression with open parentheses. Leave room between the parentheses to substitute the given value of the variable.
    2. Substitute the given values of variables in the open parentheses prepared in the first step.
    3. Evaluate the resulting expression according to the Rules Guiding Order of Operations.

    Let's begin with an example.

    Example 1

    Evaluate the expression \(x^2 − 2xy + y^2\) at \(x = −3\) and \(y = 2\).

    Solution

    Following “Tips for Evaluating Algebraic Expressions,” first replace all occurrences of variables in the expression x2 − 2xy + y2 with open parentheses.

    \[ x^2 -2xy + y^2 = ( ~ )^2 -2(~)(~) + ( ~ )^2 \nonumber\nonumber \]

    Secondly, replace each variable with its given value, and thirdly, follow the “Rules Guiding Order of Operations” to evaluate the resulting expression.

    \[ \begin{aligned} x^2 -2xy + y^2 ~ & \textcolor{red}{ \text{ Original expression.}} \\ =( \textcolor{red}{-3} )^2 -2 ( \textcolor{red}{-3})( \textcolor{red}{2}) + (\textcolor{red}{2})^2 ~ & \textcolor{red}{ \text{ Substitute } -3 \text{ for } x \text{and 2 for }y.} \\ =9-2(-3)(2)+4 ~ & \textcolor{red}{ \text{ Evaluate exponents first.}} \\ = 9-(-6)(2)+4 ~ & \textcolor{red}{ \text{ Left to right, multiply } 2(-3)=-6.} \\ =9-(-12)+4 ~ & \textcolor{red}{ \text{ Left to right, multiply: } (-6)(2) = -12.} \\ = 9 + 12 + 4 ~ & \textcolor{red}{ \text{ Add the opposite.}} \\ = 25 ~ & \textcolor{red}{ \text{ Add.}} \end{aligned}\nonumber \]

    Exercise

    If x = −2 and y = −1, evaluate x3y3.

    Answer

    −7

    Example 2

    Evaluate the expression (ab)2 If a = 3 and b = −5, at a = 3 and b = −5.

    Solution

    Following “Tips for Evaluating Algebraic Expressions,” first replace all occurrences of variables in the expression (ab)2 with open parentheses.

    \[ (a-b)^2 = (()-())^2\nonumber \]

    Secondly, replace each variable with its given value, and thirdly, follow the “Rules Guiding Order of Operations” to evaluate the resulting expression.

    \[ \begin{aligned} (a-b)^2 = (( \textcolor{red}{3})-( \textcolor{red}{-5}))^2 ~ & \textcolor{red}{ \text{ Substitute 3 for } a \text{ and } -5 \text{ for } b.} \\ = (3+5)^2 ~ & \textcolor{red}{ \text{ Add the opposite: } (3)-(-5)=3+5} \\ = 8^2 ~ & \textcolor{red}{ \text{ Simplify inside parentheses: } 3+5 = 8} \\ =64 ~ & \textcolor{red}{ \text{ Evaluate exponent: } 8^2 = 64} \end{aligned}\nonumber \]

    Exercise

    If a = 3 and b = −5, evaluate a2b2.

    Answer

    −16

    Example 3

    Evaluate the expression |a|−|b| at a = 5 and b = −7.

    Solution

    Following “Tips for Evaluating Algebraic Expressions,” first replace all occurrences of variables in the expression |a|−|b| with open parentheses.

    \[ |a| - |b| = |( ~ )| - |( ~ )|\nonumber \]

    Secondly, replace each variable with its given value, and thirdly, follow the “Rules Guiding Order of Operations” to evaluate the resulting expression.

    \[ \begin{aligned} |a| - |b| = |( \textcolor{red}{5} )| = |( \textcolor{red}{-7})| ~ & \textcolor{red}{ \text{ Substitute 5 for } a \text{ and } -7 \text{ for } b.} \\ = 5 - 7 ~ & \textcolor{red}{ \text{ Absolute values first: } |(5)| = 5 \text{ and } |(-7)|=7|} \\ =5+(-7) ~ & \textcolor{red}{ \text{ Add the opposites: } 5 - 7 = 5+(-7).} \\ =-2 ~ & \textcolor{red}{ \text{ Add: } 5+(-7)=-2.} \end{aligned}\nonumber \]

    Exercise

    If a = 5 and b = −7, evaluate 2|a| − 3|b|.

    Answer

    −11

    Example 4

    Evaluate the expression |ab| at a = 5 and b = −7.

    Solution

    Following “Tips for Evaluating Algebraic Expressions,” first replace all occurrences of variables in the expression |ab| with open parentheses.

    \[ |a-b| = |(~)-(~)|\nonumber \]

    Secondly, replace each variable with its given value, and thirdly, follow the “Rules Guiding Order of Operations” to evaluate the resulting expression.

    \[ \begin{aligned} |a-b| = |( \textcolor{red}{5})-( \textcolor{red}{-7})| ~ & \textcolor{red}{ \text{ Substitute 5 for } a \text{ and } -7 \text{ for } b.} \\ = |5+7| ~ & \textcolor{red}{ \text{ Add the opposite: } 5-(-7)=5+7.} \\ =|12| ~ & \textcolor{red}{ \text{ Add: } 5+7=12.} \\ =12 ~ & \textcolor{red}{ \text{ Take the absolute value: } |12| = 12.} \end{aligned}\nonumber \]

    Exercise

    If a = 5 and b = −7, evaluate |2a − 3b|.

    Answer

    31

    Example 5

    Evaluate the expression

    \[ \frac{ad-bc}{a+b}\nonumber \]

    at a = 5, b = −3, c = 2, and d = −4.

    Solution

    Following “Tips for Evaluating Algebraic Expressions,” first replace all occurrences of variables in the expression with open parentheses.

    \[ \frac{ad-bc}{a+b} = \frac{(~)(~)-(~)(~)}{(~)+(~)}\nonumber \]

    Secondly, replace each variable with its given value, and thirdly, follow the “Rules Guiding Order of Operations” to evaluate the resulting expression.

    \[ \begin{aligned} \frac{ad-bc}{a+b} = \frac{( \textcolor{red}{5}) -( \textcolor{red}{-3}) ( \textcolor{red}{2})}{( \textcolor{red}{5}) + ( \textcolor{red}{-3})} ~ & \textcolor{red}{ \text{ Substitute: } 5 \text{ for } a,~ -3 \text{ for } b,~ 2 \text{ for } c,~ -4 \text{ for } d.} \\ = \frac{-20-(-6)}{2} ~ & \begin{aligned} \textcolor{red}{ \text{ Numerator: } (5)(=4)=-20,~ (-3)(2) = -6.} \\ \textcolor{red}{ \text{ Denominator: } 5+(-3)=2.} \end{aligned} \\ = \frac{-20+6}{2} ~ & \textcolor{red}{ \text{ Numerator: Add the opposite.}} \\ = \frac{-14}{2} ~ & \textcolor{red}{ \text{ Numerator: } -20+6=-14.} \\ = -7 ~ & \textcolor{red}{ \text{Divide.}} \end{aligned}\nonumber \]

    Exercise

    If a = −7, b = −3, c = −15, 15, and d = −14, evaluate:

    \[\frac{a^2+b^2}{c+d}\nonumber \]

    Answer

    −2

    Example 6

    Pictured below is a rectangular prism.

    6.1: Evaluating Algebraic Expressions (4)

    The volume of the rectangular prism is given by the formula

    \[V=LWH,\nonumber \]

    where L is the length, W is the width, and H is the height of the rectangular prism. Find the volume of a rectangular prism having length 12 feet, width 4 feet, and height 6 feet.

    Solution

    Following “Tips for Evaluating Algebraic Expressions,” first replace all occurrences of of L, W, and H in the formula

    \[ V = LWH\nonumber \]

    with open parentheses.

    \[V = (~)(~)(~)\nonumber \]

    Next, substitute 12 ft for L, 4 ft for W, and 6 ft for H and simplify.

    \[ \begin{aligned} V = (12 \text{ft})(4 \text{ft})(6 \text{ft}) \\ = 288 \text{ft}^3 \end{aligned}\nonumber \]

    Hence, the volume of the rectangular prism is 288 cubic feet.

    Exercise

    The surface area of the prism pictured in this example is given by the following formula:

    \[S = 2(W H + LH + LW) \nonumber \]

    If L = 12, W = 4, and H = 6 feet, respectively, calculate the surface area.

    Answer

    288 square feet

    Exercises

    In Exercises 1-12, evaluate the expression at the given value of x.

    1. −3x2 − 6x + 3 at x = 7

    2. 7x2 − 7x + 1 at x = −8

    3. −6x − 6 at x = 3

    4. 6x − 1 at x = −10

    5. 5x2 + 2x + 4 at x = −1

    6. 4x2 − 9x + 4 at x = −3

    7. −9x − 5 at x = −2

    8. −9x + 12 at x = 5

    9. 4x2 + 2x + 6 at x = −6

    10. −3x2 + 7x + 4 at x = −7

    11. 12x + 10 at x = −12

    12. −6x + 7 at x = 11

    In Exercises 13-28, evaluate the expression at the given values of x and y.

    13. |x|−|y| at x = −5 and y = 4

    14. |x|−|y| at x = −1 and y = −2

    15. −5x2 + 2y2 at x = 4 and y = 2

    16. −5x2 − 4y2 at x = −2 and y = −5

    17. |x|−|y| at x = 0 and y = 2

    18. |x|−|y| at x = −2 and y = 0

    19. |x − y| at x = 4 and y = 5

    20. |x − y| at x = −1 and y = −4

    21. 5x2 − 4xy + 3y2 at x = 1 and y = −4

    22. 3x2 + 5xy + 3y2 at x = 2 and y = −1

    23. |x − y| at x = 4 and y = 4

    24. |x − y| at x = 3 and y = −5

    25. −5x2 − 3xy + 5y2 at x = −1 and y = −2

    26. 3x2 − 2xy − 5y2 at x = 2 and y = 5

    27. 5x2 + 4y2 at x = −2 and y = −2

    28. −4x2 + 2y2 at x = 4 and y = −5

    In Exercises 29-40, evaluate the expression at the given value of x.

    29. \( \frac{9+9x}{−x}\) at x = −3

    30. \( \frac{9 − 2x}{−x}\) at x = −1

    31. \(\frac{−8x + 9}{−9 + x}\) at x = 10

    32. \(\frac{2x + 4}{1 + x}\) at x = 0

    33. \(\frac{−4+9x}{7x}\) at x = 2

    34. \(\frac{−1 − 9x}{x}\) at x = −1

    35. \(\frac{−12 − 7x}{x}\) at x = −1

    36. \(\frac{12 + 11x}{3x}\) at x = −6

    37. \(\frac{6x − 10}{5}\) + x at x = −6

    38. \(\frac{11x + 11}{−4}\) + x at x = 5

    39. \(\frac{10x + 11}{5}\) + x at x = −4

    40. \(\frac{6x + 12}{−3}\) + x at x = 2

    41. The formula

    \[d=16t^2\nonumber \]

    gives the distance (in feet) that an object falls from rest in terms of the time t that has elapsed since its release. Find the distance d (in feet) that an object falls in t = 4 seconds.

    42. The formula

    \[d = 16t^2\nonumber \]

    gives the distance (in feet) that an object falls from rest in terms of the time t that has elapsed since its release. Find the distance d (in feet) that an object falls in t = 24 seconds.

    43. The formula

    \[C = \frac{5(F − 32)}{9}\nonumber \]

    gives the Celcius temperature C in terms of the Fahrenheit temperature F. Use the formula to find the Celsius temperature (◦ C) if the Fahrenheit temperature is F = 230◦ F.

    44. The formula

    \[C = \frac{5(F − 32)}{9}\nonumber \]

    gives the Celcius temperature C in terms of the Fahrenheit temperature F. Use the formula to find the Celsius temperature (C) if the Fahrenheit temperature is F = 95 F.

    45. The Kelvin scale of temperature is used in chemistry and physics. Absolute zero occurs at 0 K, the temperature at which molecules have zero kinetic energy. Water freezes at 273 K and boils at K = 373 K. To change Kelvin temperature to Fahrenheit temperature, we use the formula

    \[F = \frac{9(K − 273)}{5} + 32.\nonumber \]

    Use the formula to change 28K to Fahrenheit.

    46. The Kelvin scale of temperature is used in chemistry and physics. Absolute zero occurs at 0 K, the temperature at which molecules have zero kinetic energy. Water freezes at 273 K and boils at K = 373 K. To change Kelvin temperature to Fahrenheit temperature, we use the formula

    \[F = \frac{9(K − 273)}{5} + 32.\nonumber \]

    Use the formula to change 248 K to Fahrenheit.

    47. A ball is thrown vertically upward. Its velocity t seconds after its release is given by the formula

    \[v = v0 − gt,\nonumber \]

    where v0 is its initial velocity, g is the acceleration due to gravity, and v is the velocity of the ball at time t. The acceleration due to gravity is g = 32 feet per second per second. If the initial velocity of the ball is v0 = 272 feet per second, find the speed of the ball after t = 6 seconds.

    48. A ball is thrown vertically upward. Its velocity t seconds after its release is given by the formula

    \[v = v_0 − gt,\nonumber \]

    where v0 is its initial velocity, g is the acceleration due to gravity, and v is the velocity of the ball at time t. The acceleration due to gravity is g = 32 feet per second per second. If the initial velocity of the ball is v0 = 470 feet per second, find the speed of the ball after t = 4 seconds.

    49. Even numbers. Evaluate the expression 2n for the following values:

    i) n = 1

    ii) n = 2

    iii) n = 3

    iv) n = −4

    v) n = −5

    vi) Is the result always an even number? Explain.

    50. Odd numbers. Evaluate the expression 2n + 1 for the following values:

    i) n = 1

    ii) n = 2

    iii) n = 3

    iv) n = −4

    v) n = −5

    vi) Is the result always an odd number? Explain.

    Answers

    1. −186

    3. −24

    5. 7

    7. 13

    9. 138

    11. −134

    13. 1

    15. −72

    17. −2

    19. 1

    21. 69

    23. 0

    25. 9

    27. 36

    29. −6

    31. −71

    33. 1

    35. 5

    37. 46

    39. −29

    41. 256 feet

    43. 110 degrees

    45. −409 F

    47. 80 feet per second

    49.

    i) 2

    ii) 4

    iii) 6

    iv) −8

    v) −10

    vi) Yes, the result will always be an even number because 2 will always be a factor of the product 2n.

    6.1: Evaluating Algebraic Expressions (2024)

    FAQs

    How do you evaluate the answer of an expression? ›

    The order of operations should always be used to evaluate the expression. For any given expression, this means solving within the parentheses, then the exponents, then multiplying or dividing from left to right, and finally adding or subtracting left to right. Not following this order will give the incorrect answer.

    How to evaluate expressions in 7th grade? ›

    An expression can combine arithmetic operations with numbers, letters, or both. Letters are used to represent variables. To evaluate an expression, find the value of the expression by replacing each variable in the expression with a given number.

    How to evaluate expression example? ›

    Replace each variable in the expression with the specified value, and then simplify the resulting expression by specifying the order of operations. Example 1: Consider an algebraic expression x+5, Let's evaluate it for x=7. Substitute the value of x in the expression. 7+5=12.

    How do you evaluate an algebraic function? ›

    Evaluating a function means finding the value of f(x) =… or y =… that corresponds to a given value of x. To do this, simply replace all the x variables with whatever x has been assigned.

    How do you solve algebraic expressions step by step? ›

    How to Solve an Algebra Problem
    1. Step 1: Write Down the Problem. ...
    2. Step 2: PEMDAS. ...
    3. Step 3: Solve the Parenthesis. ...
    4. Step 4: Handle the Exponents/ Square Roots. ...
    5. Step 5: Multiply. ...
    6. Step 6: Divide. ...
    7. Step 7: Add/ Subtract (aka, Combine Like Terms) ...
    8. Step 8: Find X by Division.

    What is algebraic expression example and answer? ›

    An algebraic expression is an expression involving numbers, parentheses, operation signs and pronumerals that becomes a number when numbers are substituted for the pronumerals. For example 2x + 5 is an expression but +) × is not. 3x + 1 = 3 × 2 + 1 = 7 and 5(x2 + 3x) = 5(22 + 3 × 2) = 30.

    How to simplify algebraic expressions? ›

    How to simplify expressions. To simplify expressions first expand any brackets, next multiply or divide any terms and use the laws of indices if necessary, then collect like terms by adding or subtracting and finally rewrite the expression.

    How do you write an evaluate answer? ›

    Use the following structure to help you answer these questions:
    1. Make your judgement. Use evaluative terms/phrases such as 'beneficial', 'limited', 'improved', 'worsened', 'effective' and 'ineffective'.
    2. Give a point why you have made this judgement.
    3. Back this up with evidence.
    May 20, 2019

    How do I evaluate algebraic expressions? ›

    To evaluate an algebraic expression means to find the value of the expression when the variable is replaced by a given number. To evaluate an expression, we substitute the given number for the variable in the expression and then simplify the expression using the order of operations.

    How do you evaluate an algebraic expression Grade 8? ›

    In summary, evaluating algebraic expressions is when you substitute a number for each variable and then solve the expression. Usually, the trickiest part is remembering the order of operations. For this, we use PEMDAS. This stands for parentheses, exponents, multiplication, division, addition and subtraction.

    What are the steps to solve algebraic expressions? ›

    How to Solve an Algebra Problem
    1. Step 1: Write Down the Problem. ...
    2. Step 2: PEMDAS. ...
    3. Step 3: Solve the Parenthesis. ...
    4. Step 4: Handle the Exponents/ Square Roots. ...
    5. Step 5: Multiply. ...
    6. Step 6: Divide. ...
    7. Step 7: Add/ Subtract (aka, Combine Like Terms) ...
    8. Step 8: Find X by Division.

    What is the order in evaluating algebraic expressions? ›

    The order of operations used to solve algebraic expressions is most commonly remembered by the mnemonic device PEMDAS. This stands for parenthesis, exponents, multiplication, division, addition and subtraction. If the expression is solved using this order of operations the answer will be correct every time.

    How do you evaluate algebraic identities? ›

    The following are the identities in algebra with two variables. These identities can be easily verified by expanding the square/cube and doing polynomial multiplication. For example, to verify the first identity below, (a + b)2 = (a + b) (a + b) = a2 + ab + ab + b2.

    References

    Top Articles
    Mikayla Campinos Bio: The Rising Star Of Social Media
    Mikayla Campinos Biography: A Rising Star In The Social Media Scene
    Creepshotorg
    Chris Provost Daughter Addie
    My E Chart Elliot
    Don Wallence Auto Sales Vehicles
    Mama's Kitchen Waynesboro Tennessee
    Gabrielle Abbate Obituary
    2022 Apple Trade P36
    Roblox Character Added
    Florida (FL) Powerball - Winning Numbers & Results
    Ella Eats
    Top tips for getting around Buenos Aires
    Directions To 401 East Chestnut Street Louisville Kentucky
    DBZ Dokkan Battle Full-Power Tier List [All Cards Ranked]
    Las 12 mejores subastas de carros en Los Ángeles, California - Gossip Vehiculos
    Shasta County Most Wanted 2022
    Parentvue Clarkston
    The Pretty Kitty Tanglewood
    Vigoro Mulch Safe For Dogs
    Td Small Business Banking Login
    Decosmo Industrial Auctions
    Lowes Undermount Kitchen Sinks
    Joan M. Wallace - Baker Swan Funeral Home
    1973 Coupe Comparo: HQ GTS 350 + XA Falcon GT + VH Charger E55 + Leyland Force 7V
    The Tower and Major Arcana Tarot Combinations: What They Mean - Eclectic Witchcraft
    Radical Red Ability Pill
    Bolly2Tolly Maari 2
    O'reilly's In Monroe Georgia
    Sony Wf-1000Xm4 Controls
    How Do Netspend Cards Work?
    Sam's Club Gas Price Hilliard
    Used Safari Condo Alto R1723 For Sale
    Street Fighter 6 Nexus
    Word Trip Level 359
    Powerball lottery winning numbers for Saturday, September 7. $112 million jackpot
    Federal Student Aid
    Ishow Speed Dick Leak
    Henry County Illuminate
    R Nba Fantasy
    Locate phone number
    Nimbleaf Evolution
    Port Huron Newspaper
    Boyfriends Extra Chapter 6
    Advance Auto.parts Near Me
    Used Sawmill For Sale - Craigslist Near Tennessee
    Laura Houston Wbap
    Where and How to Watch Sound of Freedom | Angel Studios
    How To Win The Race In Sneaky Sasquatch
    Hkx File Compatibility Check Skyrim/Sse
    Fahrpläne, Preise und Anbieter von Bookaway
    211475039
    Latest Posts
    Article information

    Author: Msgr. Refugio Daniel

    Last Updated:

    Views: 6344

    Rating: 4.3 / 5 (54 voted)

    Reviews: 85% of readers found this page helpful

    Author information

    Name: Msgr. Refugio Daniel

    Birthday: 1999-09-15

    Address: 8416 Beatty Center, Derekfort, VA 72092-0500

    Phone: +6838967160603

    Job: Mining Executive

    Hobby: Woodworking, Knitting, Fishing, Coffee roasting, Kayaking, Horseback riding, Kite flying

    Introduction: My name is Msgr. Refugio Daniel, I am a fine, precious, encouraging, calm, glamorous, vivacious, friendly person who loves writing and wants to share my knowledge and understanding with you.